代表性论文及论著 [1] Chao Li, Xiaohu Yuan, Dingjun Li,Peng Song*, Zulai Li*, et al. Testatmospheres affecting voids distribution on MCrAlY-bond coats for TBCs at 1050℃[J].Corrosion Science, 2022, 195, 109967. [2] Yunxuan Zhou, Yang Lin, Fei Zhang, YehuaJiang, Xiaoyu Chong, Zulai Li*, etal. Lattice stability, mechanical and thermal properties of a new class ofmulticomponent (Fe, Mo, W) 6 Cη carbides with differentatomic site configurations[J]. Ceramics International, 2022, 48 (4):5107-5118. [3] FeiZhang, Tianyi Zhang, Sida Chen, Quan Shan, ZulaiLi*. Microstructure Evolution and Cooling Characteristics at C-Si-Mn-CrSteel during Different Quenching Processes[J]. Steel Research International,2021, 2100582. [4] Tianyi Zhang, Quan Shan, Zulai Li*,et al. Effects of TiC andresidual austenite synergistic strengthening mechanism on impact-abrasive wearbehavior of bainite steel[J].Wear, 2021, 486-487,204088. [5] Quan Shan, Ru Ge, ZuLai Li?, et al. Wear properties ofhigh-manganese steel strengthened with nano-sized V2Cprecipitates[J]. Wear, 2021:482-483. [6]Shan Q , Zhang T , Li Z? , et al. Effect of Aging Treatment onPrecipitates and Intrinsic Mechanical Behavior of Austenitic Matrix in Ti-V-NbAlloyed High-Manganese Steel[J]. Steel Research International, 2021.92(8),2000650. [7] DongLan Zhang, ZuLai Li?, Quan Shan, et al. Thermodynamicanalysis of the interface reaction and thermal stress of WCp/Fe composites[J].Ceramics International, 46(2020):26210-26215. [8] Zhang, F., Yang, Y., Shan, Q., Li, Z.*. Microstructure Evolution andMechanical Properties of 0.4C-Si-Mn-Cr Steel during High TemperatureDeformation[J]. Materials, 2020, 13(1), 172. [9] Li Z L, Zhang D L, Shan Q. Interfacial thermal fatigue behavior ofcast tungsten carbide particle/steel matrix surface composites[J]. Journal ofMaterials Research, 2019, 34(22): 3837-3843. [10] Shan Q, Zhou Z F, Li Z L*, et al. Effect of oxidation onthermal fatigue behavior of cast tungsten carbide particle/steel substratesurface composite[J]. Journal of Materials Research, 2019, 34(10):1754-1761. [11] 蒋业华,李祖来,卢德宏,隋育栋.陶瓷颗粒增强钢铁基空间构型耐磨复合材料,科学出版社,2019. [12] 李祖来,蒋业华,卢德宏.碳化钨颗粒增强钢基表层复合材料,科学出版社,2017. 代表性授权专利 [1]李祖来,赵伟,王兴宇,张飞,山泉.一种稀土掺杂WC颗粒增强钢基复合材料及其制备方法,ZL 202110383336.0,发明专利,授权时间:2022-02-22; [2] 李祖来,涂小天,山泉,蒋业华. 一种氧化锆增韧氧化铝陶瓷-耐磨树脂复合材料及其制备方法,ZL201810498660.5,发明专利,授权时间:2021-01-05; [3] 李祖来,王卓,山泉,周再峰,蒋业华.一种陶瓷颗粒增强金属基复合材料的连铸成形装置及方法,ZL 201810992346.2,发明专利,授权时间:2020-11-17; [4] 李祖来,王鹏飞,蒋业华,山泉,周荣. 一种颗粒增强金属基复合材料的制备方法,ZL 201710299491.8,发明专利,授权时间:2020-10-27; [5] 李祖来,张哲轩,山泉,王兴宇,蒋业华. 一种表面合金化复合材料导板的装配生产线,ZL 201910402255.3,发明专利,授权时间:2020-08-14; [6] 李祖来,颜哲,山泉,蒋业华,张亚峰. 一种碳化钨-钢基复合材料及其制 备方法,ZL 201810498844.1,发明专利,授权时间:2020-04-07. [7] 李祖来,张飞,山泉,蒋业华,周荣,涂小天. 一种高耐磨球墨铸铁磨球及其制备方法,ZL 201810358823.X,发明专利,授权时间:2019-12-03. [8] 李祖来,张亚峰,蒋业华,山泉,陈奉锐,张飞. 一种碳化钨颗粒增强钢基复合材料及其制备方法,ZL 201710820422.7,发明专利,授权时间:2019-12-03. [9] 李祖来,张亚峰,蒋业华,山泉,陈奉锐,张飞. 一种稀土改性颗粒增强钢基表层空间构型复合材料及其制备方法,ZL 201710820397.2,发明专利,授权时间:2019-09-27. [10] 李祖来,张亚峰,山泉,颜哲,张飞. 一种WCp/高锰钢基复合耐磨衬板的制备方法,ZL 201711033848.4,发明专利,授权时间:2019-07-16.
|