代表性成果 | 代表性论文 (1)XiaoYu Chong*, Jorge Paz Soldan Palma, Yi Wang, et al. Thermodynamic properties of the Yb-Sb system predicted from first-principles calculations, Acta Materialia, 2021, 217, 117169. (2)XiaoYu Chong, MingYu Hu, Peng Wu, et al. Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M=Fe, Cr, W, Mo; X=C, B) by multialloying. Acta Materialia, 2019, 169, 193-208. (3)XiaoYu Chong, Pin-Wen Guan, MingYu Hu, et al. Exploring accurate structure, composition and thermophysical properties of η carbides in 17.90?wt% W-4.15?wt% Cr-1.10?wt% V-0.69?wt% C steel, Scripta Materialia, 2018, 154, 149-153. (4)Yi Wang, XiaoYu Chong*, et al. An alternative approach to predict Seebeck coefficients: Application to La3?xTe4, Scripta Materialia, 2019, 169, 87-91. (5)Peng Wu, MingYu Hu, XiaoYu Chong*, Jing Feng. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application. Applied Physics Letters, 2018, 112 (13), 131903. (6)XiaoYu Chong, Shun-Li Shang, A M Krajewski, et al. Correlation analysis of materials properties by machine learning: Illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys. Journal of Physics: Condensed Matter, 2021, 33, 295702. (7)Yunxuan Zhou, Wei Yu, XiaoYu Chong*, et al. Rapid screening of alloy elements to improve the elastic properties of dilute Pt-based alloys: High-throughput first-principles calculations and modeling. Journal of Applied Physics, 2020, 128, 235103. (8)Lin Chen, Mingyu Hu, Jun Guo, XiaoYu Chong*, Jing Feng*. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. Journal of Materials Science & Technology, 2020, 52, 20-28. (9)Peng Wu, XiaoYu Chong*, Fushuo Wu, et al. Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics. Journal of the European Ceramic Society, 2020, 40, 3111-3121. (10)Yunxuan Zhou, Mengdi Gan, Wei Yu, XiaoYu Chong*, Jing Feng. First- principles study of thermophysical properties of polymorphous YTaO4 ceramics. Journal of the American Ceramic Society, 2021, 104: 6467-6480. (11)Jun Wang, Fushuo Wu, Jing Feng, XiaoYu Chong*. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4. Journal of the American Ceramic Society, 2021, 104: 5873-5882. (12)Fushuo Wu, Peng Wu, Yunxuan Zhou, XiaoYu Chong*, Jing Feng. The thermo-mechanical properties and ferroelastic phase transition of RENbO4 (RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics. Journal of the American Ceramic Society, 2020, 103: 2727-2740. (13)Peng Wu, Mingyu Hu, XiaoYu Chong*, et al. The effect of ZrO2 alloying on the microstructures and thermal properties of DyTaO4 for high-temperature application. Journal of the American Ceramic Society, 2019; 102: 889–895. (14)XiaoYu Chong, YeHua Jiang, Rong Zhou, Jing Feng. Multi-alloying effect on thermophysical properties of Cr7C3 type carbides. Journal of the American Ceramic Society, 2017, 100(4): 1588-1597. (封面论文) (15)Yun-Xuan Zhou, Ying Zhou, Peng Wu, Peng Song, Xiao-Yu Chong*, Jing Feng, Thermal properties of Y1-xMgxTaO4-x/2 ceramics via anion sublattice adjustment. Rare Metals, 2020, 39(5):545–554. (封面论文) (16)XiaoYu Chong, YeHua Jiang, Rong Zhou, et al. Electronic structure, anisotropic elastic and thermal properties of the η phase Fe6W6C. Computational Materials Science, 2015, 108: 205-211. (编辑选择) (17)XiaoYu Chong, GuangChi Wang, Yehua Jiang, Jing Feng. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites During Solidification Process. Acta Metall Sin, 2018, 54 (2), 314-324. (封面论文) (18)Zhen-Hua Ge1, Dongsheng Song1, XiaoYu Chong1, et al. Boosting the Thermoelectric Performance of (Na, K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. Journal of the American Chemical Society, 2017, 139 (28), 9714-9720 (共同一作) (19)种晓宇,汪广驰,蒋业华,冯晶,耐磨钢铁材料中强化相设计与性质计算研究进展,中国材料进展,2019,38(12),1145-1158. (封面论文) (20)梁迎雪,余威,周云轩,种晓宇*,冯晶*. 基于材料基因工程的超高温热障涂层研究. 航空制造技术,2021,64(18),98-112. (21)干梦迪,种晓宇*,冯晶,航空航天高温结构材料研究现状及展望,太阳成集团tyc234cc古天乐学报( 自然科学版),2021,6(46),24-36. 专著 种晓宇,抗磨钢铁材料中强化相的微结构计算与性能研究. 2018.12, 北京,科学出版社 软件著作权 (1)热力学性质高通量计算软件 [简称:FastThermo] 1.0 (2)热导率高通量计算软件 [简称:FastKappa] 1.0 代表性专利 (1)High throughput planetary ball mill,澳大利亚专利,专利号:2020103730 (2)一种原位生成二元硼化物增强贵金属高温合金的制备方法,ZL202010879145.9 (3)一种原位生成钛锆硼化物强化高模量高硬度钢的制备方法,ZL 201610528604.2 (4)一种萃取工具钢中碳化物的简易方法,ZL 201610559044.7 (5)一种碳化物定向生长的耐磨钢铁的制备方法,ZL 201610579600.7 (6)一种Fe-W-Mo-Cr-B系耐磨耐蚀合金及其制备方法,ZL 201610605778.4 (7)一种同时提高(Cr, Fe)7C3硬度和韧性的方法,ZL 201610527362.5 (8)一种高通量高效混粉机,ZL201810909933.0 (9)一种高通量行星球磨机,ZL201810404276.4 (10)一种基于活字印刷术思想开发的高通量熔化烧结装置方法,ZL201810404280.0 (11)一种稀土增强钯合金及其制备方法,ZL201910550112.7 (12)一种高熵稀土增韧钽酸盐陶瓷及其制备方法,ZL201910526981.6 (13)一种两相稀土钽酸盐陶瓷及其制备方法,ZL201910344518.X (14)一种多孔钽酸盐陶瓷及其制备方法,ZL201910345246.5 (15)一种超极限铝合金及其制备方法,ZL201811640741.0 (16)一种超极限钛合金及其制备方法,ZL201811645669.0 |